

Test Driven Development with Greenfoot

francisco.guerra@ulpgc.es

Version 1.2

The RED and GREEN steps of TDD...2

It is usual that a requirement needs several tests ...5

Sometimes, a mouse event must be simulated ..7

Testing class documentation ..8

The REFACTORING step of TDD ..10

Images that change randomly ..11

Another world appears when the "n" key is pressed ..12

Test the constructor of a world that uses random numbers. ..13

The act() method can often be called directly ..14

Project sources ...16

MyWorld class ..16

OtherWorld class ..16

Ball class ...16

Test cases of MyWorld class for JUnit4 version...17

Test cases of OtherWorld class for JUnit4 version ..18

Test cases of Ball class for JUnit4 version..19

Test cases of MyWorld class for JUnit5 version...22

Test cases of OtherWorld class for JUnit5 version ..23

Test cases of Ball class for JUnit5 version..24

This document shows how to apply Test Driven Development (TDD) while learning to program with Greenfoot.

• Test Driven Development is a software development process that relies on the repetition of a very short
development cycle: requirements are turned into very specific test cases, then the software is improved to
pass the new tests, only. This is opposed to software development that allows software to be added that is
not proven to meet requirements. This software process, that is related to the test-first programming
concepts of extreme programming and that it is an efficient software production process, it is also adequate
in the programming learning process. A programming teacher can use it in a theoretical explanation to show
different behaviors of the software or in a laboratory practice he can set the objectives in the proposed
exercises. But who else can take advantage of this way of programming is the student. When using TDD in the
development of a program, the student acquires knowledge while increasing their confidence, becoming a
better programmer in less time.

• Greenfoot is an integrated development environment using Java or Stride designed primarily for educational
purposes at the high school and undergraduate level. It allows easy development of two-dimensional
graphical applications, such as simulations and interactive games.

Let´s create a new Java Project into Greenfoot tool. As usual, this project has only the World class MyWorld. The size
of the scenario has been limited to (10, 6, 50) so that the examples fit well in this document.

Next, let´s create one Actor class, for example a ball.

The RED and GREEN steps of TDD

Both classes, MyWord and Ball, have not any behavior yet. TDD can help us to program these classes. Let´s assume
that MyWorld always begins with a ball in the position (2, 1). Before program this requirement, let´s include a test
that verifies it in the project. This is RED step of TDD. The Greenfoot Version with TDD includes a menu entry to
create this test. The name of test usually is the name of class associated plus the word “Test”, MyWorldTest will be
in this case.

Greenfoot helps the students, because the test is created by a template with a commented skeleton of Junit
framework test: one for Junit4 version and other Junit5 version. The two templates only differ in the imports of the
chosen JUnit framework version or some words that although different, have a similar behavior, such as RunWith
and ExtendWith or Before and BeforeEach. An important difference is that the JUnit5 version allows declaring local
tests, that is, removing the public modifier.

The Greenfoot IDE has a separate area to show the unit test cases of the project. The previous requirement,
“MyWorld always begins with a ball in the position (2, 1)”, can be expressed in Java by the next GIVEN/WHEN/THEN
of test included in MyWorldTest:

There is an entry in the menu to request that all the tests of the project be executed.

Because there is only one test in the project, the results display only shows this test. When this test is executed, the
result is RED because MyWorld has not been programmed yet.

Greenfoot Test Display shows the fail information when the failed test is clicked by the mouse. The test result
informs that expected <1> but was <0>, because the world has not any ball yet.

In addition, with a double click of the mouse in the failed test or by pressing the "Show source" button, you can see
the line of the test where the statement that has detected the fault is found.

Next, MyWorld can be programmed to enforce the requirement. This is GREEN step of TDD. After the requirement is
programmed, it must be verified it executing the test. Although Greenfoot shows the ball inside the world, only with
the sight could not be assured that the ball is in the correct position. However, the green test result ensures that the
requirement is met.

It is usual that a requirement needs several tests

Now TDD cycle can be begun with the next requirement: “While the ball does not arrive to the down border, it goes
down a position every time”. This requirement can be expressed in Java by the next test:

Since the Ball class has not yet been programmed, the result of the test is RED. It is very important that the first
result of any new test is RED, because this is the way how we can verify that the test is doing its job well. When
clicking with the mouse on the test that has failed, it can be verified that the test is correct, because it is waiting for
the ball, which initially starts from the position (2,1), to increase its position on the Y axis, passing to the position
(2,2).

Next, the GREEN step must be performed, in other words, the Ball class is programmed to satisfy the requirement
that has been imposed.

The requirement that is being programmed needs more than one test. In fact, as usual, any requirement needs
several tests to be able to verify that it has been achieved completely. It will be the experience that will help you find
all the tests that we must add in order to be able to verify it in a complete way. By adding a second test, that checks
the position of the ball after two cycles of act() method, it can be seen that the ball has not reached the desired
position, in other words, the solution programmed to enforce the first test does not It's enough.

Since, in the first programmed solution, the ball rotates 90 degrees in each cycle of the act() method, in the second
cycle it moves in the X axis and does not continue to fall towards the edge. The new solution that has been
programmed to enforce both tests is always to fix the same direction, not accumulating rotations.

Sometimes, a mouse event must be simulated

Now TDD cycle can be begun with the next requirement: “Each time the ball is clicked with the mouse, a corrected
one moves on the X axis, without falling on the Y axis”. A test that specifies this requirement must simulate the click
event of the mouse. To get it in the greenfoot.junitUtils package is the EventDispatch class that simulates keyboard
and mouse events. So, the RED step of the next TDD cycle that we started with this requirement must simulate a
mouse click before indicating that the act() method of the ball is executed.

Next, Ball class can be programmed to enforce the new requirement. The “if” statement allows you to differentiate
several possible alternatives in a program. The requirements that we have up to now have established two possible
cases for a ball: to fall if it is not clicked or to move to the right if it is clicked.

This requirement that is being programmed also needs more than one test. Let´s assume a ball that has dropped a
position on the Y axis, and then this ball is clicked with the mouse. If this ball was at the initial position (2,1), the
movement on the Y axis takes it to the position (2,2) and the mouse click should make it reach the position (3,2).
However, the test added to the project, which contains this case, fails.

This happens because when the first cycle of act() method is executed, the ball is turned 90 degrees to move on the
Y axis, and then when it is clicked with the mouse, it moves on the axis where it is at this moment, that is the Y axis.
A simple solution is to correct the rotation before moving on the X axis.

Now the new test is GREEN, that means, the requirement that was wanted to be included in the project, that has
been programmed, is met. But the most important is that also the rest of the tests confirm that all the requirements
programmed up to now are fulfilled. This characteristic of programming with the RED / GREEN cycle of TDD is what
increases the confidence of the programmers who use it and improves the learning process. This confidence
increases even when some of the previous tests fail and you have to rewrite the solution so that all the tests give a
GREEN result, in other words, that all the requirements are met. This offers the programmer a broad knowledge of
the state in which the solution is found at that moment and helps to take the next steps without the fear of losing
what has been achieved.

Testing class documentation

The TDD cycle that has just been done uses the EventDispatch.mouseClicked(x,y) method of greenfoot.junitUtils
package to simulate that the user clicks with the mouse on the ball object that is in the position (x,y). In the
Greenfoot IDE menu, there is an entry to see how to use some methods that can help build the test that is needed.

For example, in this help web page you could have consulted an example of use for the simulation of the mouse
event that was needed. Each example that contains this help consists of two parts: the test that is shown as an
example template, preceded by the piece of program that is supposed to be tested. To make the user manual simple
and short, all the tests that the help contains are checking a piece of the program that meets the requirements, in
other words, the result of all the tests is GREEN.

The REFACTORING step of TDD

It is important to keep the project clean and commented. For this reason, after the GREEN step, the REFACTORING
step is usually carried out. This step of the TDD cycle consists principally in the restructuring of the project code to
avoid duplication, at the same time as comments are made or better names are chosen for the identifiers. Although
the project that is being used as an example is small and simple, it is always possible to improve a program. It is
going to begin by taking the action of movement that exists in the two programmed cases by a common factor.

It is essential to execute all tests after any change in the programmed code. This action will be performed each time
a change is made, and this execution will be made even if the change is very small. If any test is RED, the code must
be modified again until all the tests are GREEN again. Reaching even the REFACTORING if a satisfactory solution is
not found. This way of working allows to detect an erroneous decision early and correct it in time.

The coding of the tests can also be improved. The action that most frequently is done is to remove the part of the
GIVEN common to all the tests and put it in the operation setup(), since the environment of execution of the tests
always runs the setup() before each test.

This REFACTORING is also valid because when executing all the tests of the project, the result of its execution is
GREEN. Although in the previous REFACTORING, the GIVEN of all the tests is in the setUp() method, it is common
that part of the GIVEN of each test is in the test itself, that means, many tests usually differentiate in some element
of their initialization.

Images that change randomly

Now TDD cycle can be begun with the next requirement. “There is a 20% chance that a ball will change its color
before moving”. It is going to be assumed that "gold-ball.png" is the image that the constructor associates with an
object of the Ball class, and that the other possible image is "Steel-ball.png". In the Greenfoot IDE menu, a new
method of greenfoot.GreenfootImage class allows to consult the name of the file from where the image was read.

Let´s use the Greenfoot.getRandomNumber(100) method to generate a random number between 0 and 99. The
values between 0 and 19 are going to be used to decide that the ball changes color. However, any test must not have
any data that can change in different executions. For this reason, the RED step uses the Random class of the
greenfoot.junitUtils package to simulate the generation of random numbers and creates the two possible cases:
generate a number between 0 and 19 to check that the ball changes color 20% of the time and another number that
is between 20 and 99 to check that 80% of the time does not change.

Next, the GREEN step must be performed, in other words, the Ball class is programmed to satisfy the requirement
that has been imposed.

A GREEN result of the tests does not ensure that the requirement is fulfilled completely. The following exercise can
be proposed here: "Design a test for the case of two consecutive act () cycles where the random numbers that are
generated are between 0 and 19, check that the result is RED, and reprogram the Ball class so that the result of all
the tests is GREEN ".

Another world appears when the "n" key is pressed

Now TDD cycle can be begun with the next requirement: “When the active world in the scenario is an object of the
MyWorld class and the "n" key is pressed, in this scenario a new world of the OtherWorld class is activated”. This
requirement is possible because a scenario can have several classes that derive from the greenfoot.World class and
the Greenfoot.setWorld(...) method allows to activate a new world during the execution of the scenario. The RED
step of TDD cycle can write with the next test.

After checking that the designed test is correct, in other words, the result is RED and the message that this test gives
is as expected, the GREEN step can be performed. In this TDD cycle, a new class must be created, the OtherWorld
class, and the act() method must be added to the MyWorld class, where the object of the OtherWorld class will be
created when you press the "n" key on the keyboard.

The Greenfoot project that is being programmed in this document already has many tests and, although all the tests
must always be executed before moving on to the next TDD cycle, in the middle of the TDD cycle it is sometimes
clearer to only execute the tests that are directly related. To achieve this, the Greenfoot IDE allows to select only one
test or all the tests of the same class to be executed.

Test the constructor of a world that uses random numbers.

In the previous TDD cycle, the OtherWorld class has been added to the project and the construction of an object of
the new class has been verified, fulfilling the requirement of the TDD cycle that has just been completed. However,
there is not yet a test that directly verifies that the construction of an object of the OtherWorld class is correct. The
test that is going to be performed should give a GREEN result and therefore we will not be doing a new TDD cycle,
but we will be in the REFACTORING step of the previous TDD cycle.

The Random package is used to generate the two random numbers since the constructor de OtherWorld needs
these random numbers as the coordinates of the ball added to the world, so that the result of the test will be
GREEN.

However, the construction of a world that needs random numbers does not work well when random numbers were
previously generated that have not been used. This is the case of the next test where three random numbers have
been generated to create the first world, that only two of them are used, and then a second world need be created
with two different random numbers.

The WorldCreator package offers the getWorld(...) method to create objects that are derived from the world class
and that require events in their construction. This method cleans the buffers used to simulate events, preventing the
following actions from being affected by unused data. To this method, in addition to the classes of the world that is
going to be built, you will be given the list of parameters that your constructor needs.

The result is that now the second world is created with the two desired random numbers, ignoring the random
number that was not used in the construction of the first world.

The act() method can often be called directly

Let’s remember the ball behavior associated with mouse clicked: “There is a 20% chance that a ball will change its
color before moving”.

The previous test, that verified image change behavior, can be programmed calling the act() method of ball.

The direct call to the act() method does not always work correctly because there may be data from the simulation of
events that interfere with the part of the test that remains to be executed. The following test shows the generation
of two random numbers and the call to an act() that only uses one of these numbers. The unused random number
remains in the pending events queue waiting for a call to request it. For this reason, the next call to act() does not
work as expected by the programmer because instead of using the random number defined in the test just before, it
uses that number that was not used in the previous call.

Although this simple example is easy to arrange, defining a single random number for the first act(), it is not always
so obvious because the events can be many and generated in the program code. The runOnce() method of the
WorldCreator class cleans the event buffers. For this reason, although a test that directly calls the act() method may
seem clearer, it is safer to use runOnce() to call the act() method. There are several versions of runOnce(): you can
execute the act of a single actor (this is the version that was used in testImageChangedAftertwoActCycles) , or
you can execute the act of a list of actors, or you can execute the act of a list of actors and their world, or you can
execute the act of all the actors and their world (this is the version that is most used in the tests of this tutorial).

In the source of the project that has been programmed in this tutorial you can see the two possible versions of each
test: one that calls act() through the call to runOnce() and another that calls directly to act().

Project sources

MyWorld class

import greenfoot.*;

public class MyWorld extends World {

 public MyWorld() {
 super(10, 6, 50);
 addObject(new Ball(), 2, 1);
 }

 @Override
 public void act() {
 if (Greenfoot.isKeyDown("n")) {
 Ball ball = getObjects(Ball.class).get(0);
 Greenfoot.setWorld(new OtherWorld(ball));
 }
 }
}

OtherWorld class

import greenfoot.*;

public class OtherWorld extends World {

 public OtherWorld(Ball ball){
 super(10, 6, 50);
 int x = Greenfoot.getRandomNumber(8);
 int y = Greenfoot.getRandomNumber(6);
 addObject(ball, x, y);
 }
}

Ball class

import greenfoot.*;

public class Ball extends Actor {

 public void act() {

 if (Greenfoot.getRandomNumber(100)<20) {
 setImage("steel-ball.png");
 }

 if (Greenfoot.mouseClicked(this)) {
 setRotation(0);

 } else {
 setRotation(90);
 }

 move(1);
 }
}

Test cases of MyWorld class for JUnit4 version

import static org.junit.Assert.*;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import greenfoot.junitUtils.runner.GreenfootRunner;
import greenfoot.junitUtils.*;

@RunWith(GreenfootRunner.class)
public class MyWorldTest {

 // Common variables to all tests are declared here.

 /**
 * Sets up the test fixture
 * Called before every test case method.
 */
 @Before
 public void setUp() throws Exception {
 // Common variables to all tests are initialized here.
 }

 @Test
 public void testConstructor() throws Exception {
 // GIVEN: The local variable belongs to MyWorld class
 MyWorld world;

 // WHEN : The action to test is the MyWorld constructor
 world = new MyWorld();

 // THEN : The asserts to verify are the number, in this case
 // one, and position of the single Ball object.
 assertEquals(1, world.getObjects(Ball.class).size());
 assertEquals(2, world.getObjects(Ball.class).get(0).getX());
 assertEquals(1, world.getObjects(Ball.class).get(0).getY());
 }

 @Test
 public void testOtherWorld() throws Exception {
 // GIVEN: The local variables are a world and its actor
 MyWorld world = new MyWorld();
 Ball ball = world.getObjects(Ball.class).get(0);

 // WHEN : The action to test is the key pressed
 EventDispatch.keyPressed("n");
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is that the ball is in new world
 assertEquals(OtherWorld.class, ball.getWorld().getClass());
 }

 @Test
 public void testOtherWorldBis() throws Exception {
 // GIVEN: The local variables are a world and its actor
 MyWorld world = new MyWorld();
 Ball ball = world.getObjects(Ball.class).get(0);

 // WHEN : The action to test is the key pressed
 EventDispatch.keyPressed("n");
 world.act();

 // THEN : The asserts to verify is that the ball is in new world
 assertEquals(OtherWorld.class, ball.getWorld().getClass());
 }
}

Test cases of OtherWorld class for JUnit4 version

import static org.junit.Assert.*;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import greenfoot.junitUtils.runner.GreenfootRunner;
import greenfoot.junitUtils.*;

@RunWith(GreenfootRunner.class)
public class OtherWorldTest {

 // Common variables to all tests are declared here.

 /**
 * Sets up the test fixture
 * Called before every test case method.
 */
 @Before
 public void setUp() throws Exception {
 // Common variables to all tests are initialized here.
 }

 @Test
 public void testConstructor() throws Exception {
 // GIVEN: The local variable belongs to OtherWorld class
 OtherWorld world;

 // WHEN : The action to test is the OtherWorld constructor
 Random.set(5, OtherWorld.class);
 Random.set(4, OtherWorld.class);
 world = new OtherWorld(new Ball());

 // THEN : The asserts to verify are the number, in this case
 // one, and position of the single Ball object.
 assertEquals(1, world.getObjects(Ball.class).size());
 assertEquals(5, world.getObjects(Ball.class).get(0).getX());
 assertEquals(4, world.getObjects(Ball.class).get(0).getY());
 }

 @Test
 public void testTwoConsecutiveWorlds() throws Exception {
 // GIVEN: The local variable belongs to OtherWorld class
 Random.set(2, OtherWorld.class);
 Random.set(2, OtherWorld.class);
 Random.set(2, OtherWorld.class);
 OtherWorld firstWorld = WorldCreator.getWorld(OtherWorld.class, new Ball());
 OtherWorld secondWorld;

 // WHEN : The action to test is the OtherWorld constructor
 Random.set(5, OtherWorld.class);
 Random.set(4, OtherWorld.class);
 secondWorld = new OtherWorld(new Ball());

 // THEN : The asserts to verify are the number, in this case
 // one, and position of the single Ball object.
 assertEquals(1, secondWorld.getObjects(Ball.class).size());
 assertEquals(5, secondWorld.getObjects(Ball.class).get(0).getX());
 assertEquals(4, secondWorld.getObjects(Ball.class).get(0).getY());
 }
}

Test cases of Ball class for JUnit4 version

import static org.junit.Assert.*;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import greenfoot.junitUtils.runner.GreenfootRunner;
import greenfoot.junitUtils.*;

@RunWith(GreenfootRunner.class)
public class BallTest {

 MyWorld world;
 Ball ball;

 @Before
 public void setUp() throws Exception {
 // GIVEN: The local variables one world and one ball
 world = new MyWorld();
 ball = world.getObjects(Ball.class).get(0);
 }

 @Test
 public void testOneAct() throws Exception {
 // WHEN : The action to test is one act cycles
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is the ball position
 assertEquals(2, ball.getX());
 assertEquals(2, ball.getY());
 }

 @Test
 public void testOneActBis() throws Exception {
 // WHEN : The action to test is one act cycles
 ball.act();

 // THEN : The asserts to verify is the ball position
 assertEquals(2, ball.getX());
 assertEquals(2, ball.getY());
 }

 @Test
 public void testTwoAct() throws Exception {
 // WHEN : The action to test is two act cycles
 WorldCreator.runOnce(world);
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is the ball position
 assertEquals(2, ball.getX());
 assertEquals(3, ball.getY());
 }

 @Test
 public void testTwoActBis() throws Exception {
 // WHEN : The action to test is two act cycles
 ball.act();
 ball.act();

 // THEN : The asserts to verify is the ball position
 assertEquals(2, ball.getX());
 assertEquals(3, ball.getY());
 }

 @Test
 public void testClickedBall() throws Exception {
 // WHEN : The action to test is to click the ball
 EventDispatch.mouseClicked(2, 1);
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is the ball position
 assertEquals(3, ball.getX());
 assertEquals(1, ball.getY());
 }

 @Test
 public void testClickedBallBis() throws Exception {
 // WHEN : The action to test is to click the ball
 EventDispatch.mouseClicked(2, 1);
 ball.act();

 // THEN : The asserts to verify is the ball position
 assertEquals(3, ball.getX());
 assertEquals(1, ball.getY());
 }

 @Test
 public void testClickedBallAfterFallOut() throws Exception {
 // WHEN : The action to test is to click the ball
 WorldCreator.runOnce(world);
 EventDispatch.mouseClicked(2, 2);
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is the ball position
 assertEquals(3, ball.getX());
 assertEquals(2, ball.getY());
 }

 @Test
 public void testClickedBallAfterFallOutBis() throws Exception {
 // WHEN : The action to test is to click the ball
 ball.act();
 EventDispatch.mouseClicked(2, 2);
 ball.act();

 // THEN : The asserts to verify is the ball position
 assertEquals(3, ball.getX());
 assertEquals(2, ball.getY());
 }

 @Test
 public void testImageChanged() throws Exception {
 // WHEN : The action to test is image changed
 Random.set(19);
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify that the image is changed
 assertEquals("steel-ball.png", ball.getImage().getImageFileName());
 }

 @Test
 public void testImageChangedBis() throws Exception {
 // WHEN : The action to test is image changed
 Random.set(19);
 ball.act();

 // THEN : The asserts to verify that the image is changed
 assertEquals("steel-ball.png", ball.getImage().getImageFileName());
 }

 @Test
 public void testImageNotChanged() throws Exception {
 // WHEN : The action to test is image changed
 Random.set(20);
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is that it is the same image
 assertEquals("gold-ball.png", ball.getImage().getImageFileName());
 }

 @Test
 public void testImageNotChangedBis() throws Exception {
 // WHEN : The action to test is image changed
 Random.set(20);
 ball.act();

 // THEN : The asserts to verify is that it is the same image
 assertEquals("gold-ball.png", ball.getImage().getImageFileName());
 }

 @Test
 public void testImageChangedAftertwoActCycles() throws Exception {
 // GIVEN:
 Random.set(20);
 Random.set(20);
 WorldCreator.runOnce(world);

 // WHEN : The action to test is image changed
 Random.set(19);
 ball.act();

 // THEN : The asserts to verify that the image is changed
 assertEquals("steel-ball.png", ball.getImage().getImageFileName());
 }

}

Test cases of MyWorld class for JUnit5 version

import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import greenfoot.junitUtils.jupiter.runner.GreenfootRunner;
import greenfoot.junitUtils.*;

@ExtendWith(GreenfootRunner.class)
class MyWorldTest {

 // Common variables to all tests are declared here.

 /**
 * Sets up the test fixture
 * Called before every test case method.
 */
 @BeforeEach
 void setUp() throws Exception {
 // Common variables to all tests are initialized here.
 }

 @Test
 void testConstructor() throws Exception {
 // GIVEN: The local variable belongs to MyWorld class
 MyWorld world;

 // WHEN : The action to test is the MyWorld constructor
 world = new MyWorld();

 // THEN : The asserts to verify are the number, in this case
 // one, and position of the single Ball object.
 assertEquals(1, world.getObjects(Ball.class).size());
 assertEquals(2, world.getObjects(Ball.class).get(0).getX());
 assertEquals(1, world.getObjects(Ball.class).get(0).getY());
 }

 @Test
 void testOtherWorld() throws Exception {
 // GIVEN: The local variables are a world and its actor
 MyWorld world = new MyWorld();
 Ball ball = world.getObjects(Ball.class).get(0);

 // WHEN : The action to test is the key pressed
 EventDispatch.keyPressed("n");
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is that the ball is in new world
 assertEquals(OtherWorld.class, ball.getWorld().getClass());
 }

 @Test
 void testOtherWorldBis() throws Exception {
 // GIVEN: The local variables are a world and its actor
 MyWorld world = new MyWorld();
 Ball ball = world.getObjects(Ball.class).get(0);

 // WHEN : The action to test is the key pressed
 EventDispatch.keyPressed("n");
 world.act();

 // THEN : The asserts to verify is that the ball is in new world
 assertEquals(OtherWorld.class, ball.getWorld().getClass());
 }
}

Test cases of OtherWorld class for JUnit5 version

import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import greenfoot.junitUtils.jupiter.runner.GreenfootRunner;
import greenfoot.junitUtils.*;

@ExtendWith(GreenfootRunner.class)
class OtherWorldTest {

 // Common variables to all tests are declared here.

 /**
 * Sets up the test fixture
 * Called before every test case method.
 */
 @BeforeEach
 void setUp() throws Exception {
 // Common variables to all tests are initialized here.
 }

 @Test
 void testConstructor() throws Exception {
 // GIVEN: The local variable belongs to OtherWorld class
 OtherWorld world;

 // WHEN : The action to test is the OtherWorld constructor
 Random.set(5, OtherWorld.class);
 Random.set(4, OtherWorld.class);
 world = new OtherWorld(new Ball());

 // THEN : The asserts to verify are the number, in this case
 // one, and position of the single Ball object.
 assertEquals(1, world.getObjects(Ball.class).size());
 assertEquals(5, world.getObjects(Ball.class).get(0).getX());
 assertEquals(4, world.getObjects(Ball.class).get(0).getY());
 }

 @Test
 void testTwoConsecutiveWorlds() throws Exception {
 // GIVEN: The local variable belongs to OtherWorld class
 Random.set(2, OtherWorld.class);
 Random.set(2, OtherWorld.class);
 Random.set(2, OtherWorld.class);
 OtherWorld firstWorld = WorldCreator.getWorld(OtherWorld.class, new Ball());
 OtherWorld secondWorld;

 // WHEN : The action to test is the OtherWorld constructor
 Random.set(5, OtherWorld.class);
 Random.set(4, OtherWorld.class);
 secondWorld = new OtherWorld(new Ball());

 // THEN : The asserts to verify are the number, in this case
 // one, and position of the single Ball object.
 assertEquals(1, secondWorld.getObjects(Ball.class).size());
 assertEquals(5, secondWorld.getObjects(Ball.class).get(0).getX());
 assertEquals(4, secondWorld.getObjects(Ball.class).get(0).getY());
 }
}

Test cases of Ball class for JUnit5 version

import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import greenfoot.junitUtils.jupiter.runner.GreenfootRunner;
import greenfoot.junitUtils.*;

@ExtendWith(GreenfootRunner.class)
class BallTest {

 MyWorld world;
 Ball ball;

 @BeforeEach
 void setUp() throws Exception {
 // GIVEN: The local variables one world and one ball
 world = new MyWorld();
 ball = world.getObjects(Ball.class).get(0);
 }

 @Test
 void testOneAct() throws Exception {
 // WHEN : The action to test is one act cycles
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is the ball position
 assertEquals(2, ball.getX());
 assertEquals(2, ball.getY());
 }

 @Test
 void testOneActBis() throws Exception {
 // WHEN : The action to test is one act cycles
 ball.act();

 // THEN : The asserts to verify is the ball position
 assertEquals(2, ball.getX());
 assertEquals(2, ball.getY());
 }

 @Test
 void testTwoAct() throws Exception {
 // WHEN : The action to test is two act cycles
 WorldCreator.runOnce(world);
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is the ball position
 assertEquals(2, ball.getX());
 assertEquals(3, ball.getY());
 }

 @Test
 void testTwoActBis() throws Exception {
 // WHEN : The action to test is two act cycles
 ball.act();
 ball.act();

 // THEN : The asserts to verify is the ball position
 assertEquals(2, ball.getX());
 assertEquals(3, ball.getY());
 }

 @Test
 void testClickedBall() throws Exception {
 // WHEN : The action to test is to click the ball
 EventDispatch.mouseClicked(2, 1);
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is the ball position
 assertEquals(3, ball.getX());
 assertEquals(1, ball.getY());
 }

 @Test
 void testClickedBallBis() throws Exception {
 // WHEN : The action to test is to click the ball
 EventDispatch.mouseClicked(2, 1);
 ball.act();

 // THEN : The asserts to verify is the ball position
 assertEquals(3, ball.getX());
 assertEquals(1, ball.getY());
 }

 @Test
 void testClickedBallAfterFallOut() throws Exception {
 // WHEN : The action to test is to click the ball
 WorldCreator.runOnce(world);
 EventDispatch.mouseClicked(2, 2);
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is the ball position
 assertEquals(3, ball.getX());
 assertEquals(2, ball.getY());
 }

 @Test
 void testClickedBallAfterFallOutBis() throws Exception {
 // WHEN : The action to test is to click the ball
 ball.act();
 EventDispatch.mouseClicked(2, 2);
 ball.act();

 // THEN : The asserts to verify is the ball position
 assertEquals(3, ball.getX());
 assertEquals(2, ball.getY());
 }

 @Test
 void testImageChanged() throws Exception {
 // WHEN : The action to test is image changed
 Random.set(19);
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify that the image is changed
 assertEquals("steel-ball.png", ball.getImage().getImageFileName());
 }

 @Test
 void testImageChangedBis() throws Exception {
 // WHEN : The action to test is image changed
 Random.set(19);
 ball.act();

 // THEN : The asserts to verify that the image is changed
 assertEquals("steel-ball.png", ball.getImage().getImageFileName());
 }

 @Test
 void testImageNotChanged() throws Exception {
 // WHEN : The action to test is image changed
 Random.set(20);
 WorldCreator.runOnce(world);

 // THEN : The asserts to verify is that it is the same image
 assertEquals("gold-ball.png", ball.getImage().getImageFileName());
 }

 @Test
 void testImageNotChangedBis() throws Exception {
 // WHEN : The action to test is image changed
 Random.set(20);
 ball.act();

 // THEN : The asserts to verify is that it is the same image
 assertEquals("gold-ball.png", ball.getImage().getImageFileName());
 }

 @Test
 void testImageChangedAftertwoActCycles() throws Exception {
 // GIVEN:
 Random.set(20);
 Random.set(20);
 WorldCreator.runOnce(world);

 // WHEN : The action to test is image changed
 Random.set(19);
 ball.act();

 // THEN : The asserts to verify that the image is changed
 assertEquals("steel-ball.png", ball.getImage().getImageFileName());
 }

}

