

Greenfoot User Templates

francisco.guerra@ulpgc.es
Version 1.0

Test Driven Development with Greenfoot, which can be found in https://greenroom.greenfoot.org, contains the
GreenfootUnitTestIDE-3.7.1.jar executable that adds the creation, editing and execution of unit tests in the
Greenfoot IDE to perform the test-driven development in the learning process. Additionally, this latest version
includes the user template configuration that the Greenfoot IDE applies to class creation, which is the focus of this
document. Next, the need for and use of template configuration will be introduced through examples using the
Greenfoot IDE.

Let´s create a new Java Project into Greenfoot tool. As usual, this project has only the World class MyWorld. The size
of the scenario has been limited to (8, 5, 60) so that the examples fit well in this document.

Next, let´s create one Actor class, for example a ball.

To add the MyWorld class or the Ball class, the Greenfoot IDE uses templates. These templates, which are applied to
define the initial structure of an Actor or a World, help the user at the beginning of the programming of each class
that is added to his project. In addition, to reduce the time of preparation of an exercise or to be able to apply it to
new students, the teacher can add to the project one or several java classes that the students extend to create their
classes with less effort. However, the template that is applied each time a student adds a new class does not always

fit well with the class architecture of the project or the learning objectives sought in the exercise. To show the
limitation in the application of the templates offered by Greenfoot, an exercise will be designed where control
structures are practiced with beginning students.

Suppose you want to design a board game with a board and moving pieces to create one or more exercises in which
students experiment with control structures. Initially, the teacher prepares a project that has an 8x6 square board
(class Board) and the class Piece.

Since you want to motivate the students by showing the movement of the pieces they are programming, but at the
same time the students do not have the necessary programming knowledge, the teacher adds the movement by
programming the act() method of the Piece class and indicates that it is final to prevent students from substituting it
when they add their pieces to the project.

If a student decides to add the Rocket class to the board game to have pieces in the board game that represent
rockets, he extends the Piece class that the teacher has given him with the Greenfoot project and that is associated
with the control structures exercise.

However, the student encounters an unexpected error: the Greenfoot IDE shows an error because the template
used to create the Rocket class adds the act() method, and the teacher marked it as final in the Piece class to
prevent this from happening.

Difficult for a novice student to handle, this error occurs because the Greenfoot IDE uses a template that does not
check that the inherited act() method is final. The teacher can avoid generating this error in the student assignment
if they can specify a custom template for the Piece class, that is, a template that does not include the act() method
when a Student decides to create a new class by extending the Piece class. The modified interface of the Greenfoot
IDE offers the possibility to enable the creation or modification of the templates used to create the classes.

When the template configurator is enabled, the Greenfoot IDE adds the ability to define a template to all classes.
That is, if we select the Piece class, the operation of creating a new template is offered, which will be applied every
time a class is created from the Piece class.

When the create a template operation is executed, the new template is started with the one used up to that
moment to extend the class where this operation is executed. Since no templates have been defined in this project
yet, the new template starts with the Greenfoot IDE's default template.

$CLASSNAME represents the name that the new class that is created will have, that is, the Greenfoot IDE will replace
it with Rocket. $EXTENDSANDSUPERCLASSNAME will be used by the Greenfoot IDE to put extends Piece, that is to
indicate that the new class is created from the Piece class.

The teacher should use the editor provided by the Greenfoot IDE to modify the template, removing or adding as
necessary. In this example, we will assume that the students must program only the allowedMoves method. This
method will be used by students to indicate the positions on the board to which a piece could be moved.

Therefore, if the teacher adds the above template to the project he hands out to the students, when a student
decides to add pieces representing rockets to the board game by extending the Piece class to create the Rocket
class…

... the new class Rocket will be ready for the student to start their work.

The teacher can prevent students from using the Pieces class to create pieces by improving the design of the
exercise by marking the Piece class as abstract. Below is a possible full version of the exercise.

The behavior that the act() method defines for all pieces causes the allowedMoves() method to be called when a
piece is clicked, and the behavior that the act() method defines for blue-ticked squares causes all blue-marked
squares to be cleared, then it moves the selected piece to that square and finally removes all blue marks from the

board. To practice the control structure for loop, students can have as an exercise programming the motion of a
rocket that must be able to move from their position to any position to its right in a straight line, as shown below.

This exercise offers the possibility of many variations that have not been included in this document in order to make
the explanation of the template use as simple as possible. At the University of Las Palmas de Gran Canaria, students
use a variant of this scenario to practice control structures by programming a chess game.

